Extensions 1→N→G→Q→1 with N=C22 and Q=C4×D13

Direct product G=N×Q with N=C22 and Q=C4×D13
dρLabelID
C22×C4×D13208C2^2xC4xD13416,213

Semidirect products G=N:Q with N=C22 and Q=C4×D13
extensionφ:Q→Aut NdρLabelID
C221(C4×D13) = Dic134D4φ: C4×D13/Dic13C2 ⊆ Aut C22208C2^2:1(C4xD13)416,102
C222(C4×D13) = C4×C13⋊D4φ: C4×D13/C52C2 ⊆ Aut C22208C2^2:2(C4xD13)416,149
C223(C4×D13) = C22⋊C4×D13φ: C4×D13/D26C2 ⊆ Aut C22104C2^2:3(C4xD13)416,101

Non-split extensions G=N.Q with N=C22 and Q=C4×D13
extensionφ:Q→Aut NdρLabelID
C22.1(C4×D13) = D52.2C4φ: C4×D13/Dic13C2 ⊆ Aut C222084C2^2.1(C4xD13)416,128
C22.2(C4×D13) = D52.3C4φ: C4×D13/C52C2 ⊆ Aut C222082C2^2.2(C4xD13)416,122
C22.3(C4×D13) = C22.2D52φ: C4×D13/D26C2 ⊆ Aut C221044C2^2.3(C4xD13)416,13
C22.4(C4×D13) = C52.46D4φ: C4×D13/D26C2 ⊆ Aut C221044+C2^2.4(C4xD13)416,30
C22.5(C4×D13) = C4.12D52φ: C4×D13/D26C2 ⊆ Aut C222084-C2^2.5(C4xD13)416,31
C22.6(C4×D13) = C23.11D26φ: C4×D13/D26C2 ⊆ Aut C22208C2^2.6(C4xD13)416,98
C22.7(C4×D13) = M4(2)×D13φ: C4×D13/D26C2 ⊆ Aut C221044C2^2.7(C4xD13)416,127
C22.8(C4×D13) = C8×Dic13central extension (φ=1)416C2^2.8(C4xD13)416,20
C22.9(C4×D13) = C52.8Q8central extension (φ=1)416C2^2.9(C4xD13)416,21
C22.10(C4×D13) = C1048C4central extension (φ=1)416C2^2.10(C4xD13)416,22
C22.11(C4×D13) = D261C8central extension (φ=1)208C2^2.11(C4xD13)416,27
C22.12(C4×D13) = C26.10C42central extension (φ=1)416C2^2.12(C4xD13)416,38
C22.13(C4×D13) = C2×C8×D13central extension (φ=1)208C2^2.13(C4xD13)416,120
C22.14(C4×D13) = C2×C8⋊D13central extension (φ=1)208C2^2.14(C4xD13)416,121
C22.15(C4×D13) = C2×C4×Dic13central extension (φ=1)416C2^2.15(C4xD13)416,143
C22.16(C4×D13) = C2×C26.D4central extension (φ=1)416C2^2.16(C4xD13)416,144
C22.17(C4×D13) = C2×D26⋊C4central extension (φ=1)208C2^2.17(C4xD13)416,148

׿
×
𝔽